M.S. Ladnushkin Investigation of register duplication method in scan compression designs
M.S. Ladnushkin Investigation of register duplication method in scan compression designs


Volumes of test data are growing and test compression schemes are not enough for today’s challenges such as growth of length of logic paths and higher amount of blocking nonequivalent faults during test. These factors cause not only inflation of test sets and new requirements of storage but also increase test application time. Test point are widely used to improve testability and decrease number of blocking faults by inserting controlling and observing additional logic. Method of duplicating cells is known as a timing improving approach which is used during topology planning. In this paper it was shown that duplicating of functional register can improve testability if there are reconvergent fanouts on trigger’s output. Also it was shown that duplicating of register can reduce number of blocking faults on each combinational cell in all output paths of that register. A complexity analysis of logic path of several VLSI’s was presented. It was observed that more than 70% of all paths have one source. But there were a few paths with 7400 startpoints in one of the designs. Such paths are the most hard to test paths so duplicating of startpoint triggers of these paths would have maximum effect on testability. An algorithm of selecting registers for duplication with long output paths was proposed. Experiments on 10 industrial projects show average test time reduction 14,4% while area overhead was less than 1,2%.


scan testing, register duplicating, test compression, modeling.

PP. 42-51.

DOI 10.14357/20718632180304 


1. Abramovici M., Breuer M. A. and Friedman A.D. Digital Systems Testing and Testable Design, Computer Science Press, 1990. 364-366 p.
2. Touba N. A. Survey of test vector compression techniques // IEEE Design & Test of Computers. – July-August 2006. – Vol. 23. №4. - P. 294–303.
3. Kapur R., Historical perspective on scan compression // IEEE Design & Test of Computers. – March-April 2008. – Vol. 25. №2. – P. 114-120.
4. Hapke F., Redemund W., Glowatz A., Rajski J., Reese M., Hustava M., Keim M., Schloeffel J., Fast A. Cell-Aware Test // IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.- Sep. 2014. - Vol. 33. - №9. – P. 1396-1409.
5. Acero C., Feltham D., Hapke F., Moghaddam E., Mukherjee N., Neerkundar V., Patyra M., Rajski J., Tyszer J., Zawada J. Embedded deterministic test points for compact cell-aware tests // Test Conf ITC 2015 IEEE Int. - Oct. 2015. - P. 1-8.
6. Savir J. Good Controllability and Observability Do Not Guarantee Good Testability // IEEE Transactions on Computers. - 1983. - V. 32. №12. - P.1198-1200.
7. Robert M.W., Lala P. K. Algorithm to Detect Reconvergent Fanout in Logic Circuits // IEEE Proceedings. - 1987. - Vol.134. №2. - P.105-111.
8. Xu S., Edirisuriya E. A new way of detecting reconvergent fanout branch pairs in logic circuits // Asian Test Symposium (ATS'04). - 2004. - P. 354-357.
9. Pomeranz I., Reddy S.M. Test-point insertion to enhance test compaction for scan designs // Proc. ICDSN. – 2000. - P. 375-381.
10. Geuzebroek M.J., Linden J.T., Goor A.J. Test point insertion that facilitates ATPG in reducing test time and data volume // Proc. ITC. – 2002. - P. 138-147.
11. Kumar A., Rajski J., Reddy S.M., Rinderknecht T. On the Generation of Compact Deterministic Test Set for BIST Ready Designs // Asian Test Symposium. – 2013. - P. 201-206.
12. Acero C., Feltham D., Liu Y., Moghaddam E., Mukherjee N., Patyra M., Rajski J., Reddy S.M., Tyszer J., Zawada J. Embedded deterministic test points // IEEE Transactions on Very Large Scale Integration (VLSI) Systems. – 2017. - P. 1-13.
13. Ren H., Kusko M., Kravets V., Yaari R. Low cost test point insertion without using extra registers for high performance design // Proc. ITC. - 2009. – P. 1-8.
14. Yang J., Touba N. A., Nadeau-Dostie B. Test Point Insertion with Control Points Driven by Existing Functional Flip-Flops //
IEEE Transactions on Computers. 2012. V. 61. P. 1473-1483.
15. Srivastava A., Kastner R., Sarrafzadeh M. Timing driven gate duplication: Complexity issues and algorithms // Proc. ICCAD.
- 2000. - P. 447-450.
16. Goessel M., Singh A., Sogomonyan E. Scan-path with directly duplicated and inverted duplicated registers // Proceedings
20th IEEE VLSI Test Symposium. 2002. P. 47-52.
17. Savir J. Syndrome-testable design of combinational circuits // IEEE Transactions on Computers, 1980. V.29. - P. 442-451.
18. Liu Y., Moghaddam E., Mukherjee N., Reddy S. M., Rajski J., Tyszer J. Minimal area test points for deterministic patterns //
Proc. ITC. - Nov. 2016. – P. 1-7
19. Ladnushkin M.S. Snizhenie apparaturnyh zatrat i uvelichenie kojefficienta kompressii sredstv testirovanija konstantnyh neispravnostej KMOP cifrovyh SBIS (Reducing area and increasing compression ratio of scan compression system for digital
VLSI using stuck-at fault model) // VII Vserossijskaja nauchno-tehnicheskaja konferencija «Problemy razrabotki perspektivnyh
mikro- i nanojelektronnyh sistem – 2016». Sbornik trudov / pod obshh. red. akademika RAN A.L. Stempkovskogo. M.: IPPM RAN, 2016. Ch.2, S. 68-75.
20. Acero C., Feltham D., Patyra M. et al. On new test points for compact cell-aware tests // IEEE Des. Test. - Dec. 2016. - Vol. 33 №6. - P. 7-14.
21. Wohl P., Waicukauski J.A., Ramnath S. Fully X-Tolerant Combinational Scan Compression // International Test Conference. - 2007. - P. 1-10.


2023 / 02
2023 / 01
2022 / 04
2022 / 03

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".