P. A. Kurnikov, N. V. Krapuhina Phase space reconstruction of high%loaded caching mechanism dynamics in information systems
P. A. Kurnikov, N. V. Krapuhina Phase space reconstruction of high%loaded caching mechanism dynamics in information systems


This paper proposes an approach to determining the critical operation modes in object-relational mapping (ORM) components applied in information systems. A key feature of the approach is projection of information systems simulation modeling. The projection implies the cases of the execution of queries to databases using caching in the context of time. It was shown that cache behavior can be identified with behavior of reactants concentrations in oscillatory chemical reactions. This process can be described by a system of higher order non-linear differential equations. Often, not possible to solve the systems analytically or numerically. It was proposed that observe cache states at discrete points in time during information system model work and submit data in multidimensional time series. One of the multidimensional phase space reconstruction methods was proposed. Poincare maps and stability analysis with the use maximal Lyapunov exponent was applied. The article illustrates dissipative structures as well as deterministic chaos with the complete determinism of queries in simulated information systems.


information system, performance, ORM, database, caching, phase space reconstruction, Poincare map, largest Lyapunov exponent, dissipative system, limit cycle, chaos.

PP. 49-65.

DOI 10.14357/20718632190105


1. Gadkari, A. (2013). Caching in the distributed environment. [Advances in Computer Science: an International Journal], 2(1):9-16.
2. Bhatti, S. N., Abro, Z. H., & Abro, F. R. (2013). Performance evaluation of java based object relational mapping tool. [Mehran University Research Journal of Engineering and Technology], 32(2):159-166.
3. Gruca, A., Podsiadło, P. (2014). Performance Analysis of. NET Based Object–Relational Mapping Frameworks [In International Conference: Beyond Databases, Architectures and Structures]. Springer, Cham. 40-49.
4. Jacobson, R., & Misner, S. (2006). Microsoft SQL Server (TM) 2005 Analysis Services Step by Step. Microsoft Press.
5. Krapuhina N.V, Kurnikov P.A, Tarkhanov I.A. (2015) Multi-criteria method of estimating performance ORM components in information systems [Trudi Instituta sistemnogo analisa Rossiyskoy akademii nauk (ISA RAN)], 65(22):105-109.
6. Melnikov S. V. (2013). Formation of dissipative structures in ORM-components of high-loaded portals [Perspectives of Science & Education]. 6(5)
7. Kudzh, S. A., & Melnikov, S. V. (2014). Unsteady operation of a software system with the active" caching" to access the database [Perspectives of Science & Education], 8(2).
8. Melnikov S. V. (2012). Dissipative structures of the "cycle" in the software, which exists in the mode of multithreaded execution of the executable code [Perspectives of Science & Education], 10(6).
9. Nikolis G., Prigozhin I. (1990). Poznanie slozhnogo. Vvedenie [Knowledge of the complex. Intruduction]. Mir, Moscow.
10. Takens F. (1981). "Detecting strange attractors in turbulence". [Dynamical Systems and Turbulence], Lecture Notes in Mathematics, vol. 898. Springer-Verlag. 366–381.
11. Garcia, S. P., & Almeida, J. S. (2005). Multivariate phase space reconstruction by nearest neighbor embedding with different time delays [Physical Review E] 72(2), 027205.
12. Hirata, Y., Suzuki, H., & Aihara, K. (2006). Reconstructing state spaces from multivariate data using variable delays [Physical Review E], 74(2), 026202.
13. Barnard, J. P., Aldrich, C., & Gerber, M. (2001). Embedding of multidimensional time-dependent observations [Physical Review E], 64(4), 046201.
14. Wang, R., Gao, J., Gao, Z., Gao, X., Jiang, H., & Cui, L. (2015). Data fusion based phase space reconstruction from multi-time series [Intern J Database Theory]. 8(6):101-110.
15. Palit, S. K., Mukherjee, S., & Bhattacharya, D. K. (2013). A high dimensional delay selection for the reconstruction of proper phase space with cross auto-correlation [Neurocomputing]. 113:49-57.
16. Adya, A., Bernstein, P. A., & Melnik, S. (2010). U.S. Patent No. 7,647,298. Washington, DC: U.S. Patent and Trademark Office.
17. Albahari, B., & Simmons, D. G. (2009). U.S. Patent No. 7,526,501. Washington, DC: U.S. Patent and Trademark Office.
18. Park, H. C. (2017). Relational Algebraic Graph Algorithms [International Journal of Computer Science and Network Security (IJCSNS)], 17(1):25.
19. Silberschatz, A., Korth, H. F., & Sudarshan, S. 1997. [Database system concepts (Vol. 4).] New York: McGraw-Hill.
20. Bykov V. V., (1971). Digital simulation and statistical radio engineering, [Izdat. "Sov. Radio"], Moscow.
21. Turcotte D.L. 1997. [Fractals and chaos in geology and geophysics]. Cambridge University Press, Cambridge.
22. Theiler, J. (1986). Spurious dimension from correlation algorithms applied to limited time-series data. [Physical review A], 34(3), 2427.
23. Kantz, H., & Schreiber, T. (2004). Nonlinear time series analysis (Vol. 7). Cambridge university press.
24. Malinetskii, G. G., & Potapov, A. B. (2000). Modern problems of nonlinear dynamics. Moscow: Editorial URSS.
25. Parker, T. S., & Chua, L. (2012). Practical numerical algorithms for chaotic systems. Springer Science & Business Media.
26. Arnold, L., Kliemann, W., & Oeljeklaus, E. (1986). Lyapunov exponents of linear stochastic systems. In Lyapunov Exponents (pp. 85-125). Springer, Berlin, Heidelberg.
27. Rosenstein, M. T., Collins, J. J., & De Luca, C. J. (1993). A practical method for calculating largest Lyapunov exponents from small data sets [Physica D: Nonlinear Phenomena], 65(1-2):117-134.
28. Eckmann, J. P., Kamphorst, S. O., Ruelle, D., & Ciliberto, S. (1995). Liapunov exponents from time series. In Turbulence, [Strange Attractors And Chaos] 427-435.
29. Anishchenko, V. S., Astakhov, V., Neiman, A., Vadivasova, T., & Schimansky-Geier, L. (2007). Nonlinear dynamics of chaotic and stochastic systems: tutorial and modern developments. [Springer Science & Business Media].
30. Banerjee, M. (2015). Turing and non-Turing patterns in two-dimensional prey-predator models [In Applications of Chaos and Nonlinear Dynamics in Science and Engineering-Vol. 4] Springer, Cham. 257-280.
31. Bashkirtseva, I. A., Isakova, M. G., & Ryashko, L. B. (1999). Quasipotential in stochastic stability analysis of the nonlinear oscillator orbits [Neural, Parallel & Scientific Computations]. 7(3):299-310.
32. Bashkirtseva, I. A., & Ryashko, L. B. (2000). Sensitivity analysis of the stochastically and periodically forced Brusselator [Physica A: Statistical Mechanics and its Applications] 278(1-2): 126-139.
33. Bashkirtseva, I. A., & Ryashko, L. B. (2002). Sensitivity analysis of stochastically forced Lorenz model cycles under period-doubling bifurcations [Dynamic systems and applications] 11(2):293-309.
34. Bashkirtseva, I. A., & Ryashko, L. B. (2004). Stochastic sensitivity of 3D-cycles [Mathematics and Computers in Simulation] 66(1):55-67.
35. Bashkirtseva, I., & Ryashko, L. (2005). Sensitivity and chaos control for the forced nonlinear oscillations [Chaos, Solitons & Fractals] 26(5):1437-1451.

2023 / 02
2023 / 01
2022 / 04
2022 / 03

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".