Abstract.
This paper provides an overview of modern methods of big data analysis and image processing, as well as artificial intelligence technologies concerning the task of ensuring safety in the development of oil and gas wells. The paper discusses methods for recognizing typical emergencies when drilling oil and gas wells, decision-making methods and issuing recommendations in the process of well construction, automation technology for monitoring compliance with safety procedures and organizing automatic continuous visual monitoring of technological processes, as well as an overview of modern machine learning methods, used in the process of solving problems of localization, orientation, and recognition of key structural objects in the images and video. Special attention is paid to optimization methods from the computational point of view of the considered algorithms and the realization of edge computing.
Keywords:
oil and gas wells, recognition of emergency situations, differential wall sticking, decisionmaking methods, automated control of technological processes, pattern recognition, neural networks, edge computing.
PP. 12-24.
DOI 10.14357/20718632200102 References
1. Samotoj A.K. Preduprezhdenie i likvidaciya prihvatov trub pri burenii skvazhin. M.: Nedra, 1979. 182 s. 2. Avetisov A.G., Samotoj A.K., Ahmadullin. M.M. Prognozirovanie, preduprezhdenie i likvidaciya prihvatov s ispol'zovaniem statisticheskih metodov. Obzornaya informaciya. Seriya: Burenie. M.: VNIIOENG, 1978. 48 s. 3. Albaiyat I. Implementing artificial neural networks and support vector machines in stuck pipe prediction. 2012. 4. Chamkalani A., and etc. Support vector machine model: a new methodology for stuck pipe prediction // SPE Unconventional Gas Conference and Exhibition. 2013. 5. Murillo A., and etc. Pipe sticking prediction and avoidance using adaptive fuzzy logic modeling // SPE Production and Operations Symposium. 2009. 6. Alshaikh A., and etc. Machine Learning for Detecting Stuck Pipe Incidents: Data Analytics and Models Evaluation // International Petroleum Technology Conference. 2019. 7. Naraghi M.E., Ezzatyar P., Jamshidi S. Prediction of drilling pipe sticking by active learning method (ALM) // J. Pet. Gas Eng. Academic Journals, 2013. T. 4, № 7. S 173–183. 8. Kodirov SH.SH., SHestakov A.L. Razrabotka iskusstvennoj nejronnoj seti dlya prognozirovaniya prihvatov kolonn buril'nyh trub // Vestnik YUzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Komp'yuternye tekhnologii, upravlenie, radioelektronika. Federal'noe gosudarstvennoe byudzhetnoe obrazovatel'noe uchrezhdenie vysshego~…, 2019. T. 19, № 3. 9. Gurina E., and etc. Application of machine learning to accidents detection at directional drilling // J. Pet. Sci. Eng. Elsevier, 2020. T. 184. S. 106519. 10. Abu-Abed F. Development of Tools for the Analysis of Pre-Emergency Situations on the Drilling Rig Based on Neural Network Technologies // E3S Web Conf. 2018. 11. Abu-Abed F.N. Nadezhnost' ob"ektov neftegazodobyvayushchej promyshlennosti // Gazovaya promyshlennost'. Obshchestvo s ogranichennoj otvetstvennost'yu Kamelot Pablishing, 2015. № S720. S. 107–111. 12. Abu-Abed F.N. Avtomatizirovannaya sistema obnaruzheniya predavarijnyh situacij na ob"ektah neftegazodobyvayushchej promyshlennosti // Karotazhnik. Mezhdunarodnaya Associaciya nauchno-tekhnicheskogo i delovogo sotrudnichestva po~…, 2015. № 5. S. 48–61. 13. Abu-Abed F.N. Snizhenie riska pri stroitel'stve gazovyh skvazhin na baze nejrosetevoj modeli // Gazovaya promyshlennost'. Obshchestvo s ogranichennoj otvetstvennost'yu Kamelot Pablishing, 2014. № S712. S. 100–102. 14. Abu-Abed F.N. Obnaruzhenie predavarijnyh situacij v processe promyshlennogo bureniya neftyanyh skvazhin. Tver', 2011. 15. Dopira R.V., Abu-Abed F.N. Primenenie sredstv modelirovaniya nejrosetej dlya analiza predavarijnyh situacij na burovyh // Programmnye produkty i sistemy. Zakrytoe akcionernoe obshchestvo Nauchno-issledovatel'skij institut~…, 2010. № 3. 16. Abu-Abed F.N. Razrabotka sredstv modelirovaniya nejrosetej // Vestnik Tverskogo gosudarstvennogo tekhnicheskogo universiteta. Federal'noe gosudarstvennoe byudzhetnoe obrazovatel'noe uchrezhdenie vysshego~…, 2005. № 7. S. 125–129. 17. Abu-Abed F.N., Borisov N.A. Problemy i resheniya razrabotki sredstv avtomatizacii podderzhki deyatel'nosti operatora burovoj ustanovki // Informatika, upravlenie i sistemnyj analiz. 2016. S. 85–96. 18. Haering N., Venetianer P.L., Lipton A. The evolution of video surveillance: An overview // Mach. Vis. Appl. 2008. 19. Ben Mabrouk A., Zagrouba E. Abnormal behavior recognition for intelligent video surveillance systems: A review // Expert Systems with Applications. 2018. 20. Gvozdek M. Spravochnik po tekhnike dlya videonablyudeniya. Planirovanie, proektirovanie, montazh. Tekhnosfera, 2010. 545 s. 21. Töreyin B.U., and etc. Computer vision based method for real-time fire and flame detection // Pattern Recognit. Lett. 2006. 22. Muhammad K., Ahmad J., Baik S.W. Early fire detection using convolutional neural networks during surveillance for effective disaster management // Neurocomputing. 2018. 23. Zhong Z., and etc. A convolutional neural network-based flame detection method in video sequence // Signal, Image Video Process. 2018. 24. Giannakeris P., and etc. People and Vehicles in Danger - A Fire and Flood Detection System in Social Media // 2018 IEEE 13th Image, Video, and Multidimensional Signal Processing Workshop, IVMSP 2018 - Proceedings. 2018. 25. Jiang Y., Yin S., Kaynak O. Data-driven monitoring and safety control of industrial cyber-physical systems: Basics and beyond // IEEE Access. 2018. 26. Grau A., and etc. Industrial robotics in factory automation: From the early stage to the Internet of Things // Proceedings IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. 2017. 27. Clay A. An Overview of Smartrooms and Collaborative Work Environments. From Research Issues to User Acceptance in the Oil and Gas Industry. 2018. 28. Ehlers S.G., Tormoehlen R.L. Agricultural Security Monitoring and Safety Alert System: Implementation of Wireless Video on the Farmstead // J. Agric. Saf. Health. American Society of Agricultural and Biological Engineers, 2019. T. 25, № 4. S. 155–168. 29. Wang B., and etc. Prevention and control of major accidents (MAs) and particularly serious accidents (PSAs) in the industrial domain in China: Current status, recent efforts and future prospects // Process Safety and Environmental Protection. 2018. 30. Howard J., Murashov V., Branche C.M. Unmanned aerial vehicles in construction and worker safety // American Journal of Industrial Medicine. 2018. 31. Khalid A., and etc. Security framework for industrial collaborative robotic cyber-physical systems // Comput. Ind. 2018. 32. Cheng G., Han J. A survey on object detection in optical remote sensing images // ISPRS Journal of Photogrammetry and Remote Sensing. 2016. 33. Sirmacek B., Unsalan C. Urban-area and building detection using SIFT keypoints and graph theory // IEEE Trans. Geosci. Remote Sens. 2009. 34. Zhang J., and etc. Semi-automatic road tracking by template matching and distance transformation in Urban areas // Int. J. Remote Sens. 2011. 35. Xiangguo L., and etc. Semi-automatic road tracking by template matching and distance transform // 2009 Joint Urban Remote Sensing Event. 2009. 36. Baltsavias E.P. Object extraction and revision by image analysis using existing geodata and knowledge: Current status and steps towards operational systems // ISPRS J. Photogramm. Remote Sens. 2004. 37. Blaschke T., Lang S., Hay G.J. Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications // LibTuDelftNet. 2008. 38. Felzenszwalb P.F., Girshick R.B., McAllester D. Cascade object detection with deformable part models // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2010. 39. Sivic J., Zisserman A. Video google: A text retrieval approach to object matching in videos // Proceedings of the IEEE International Conference on Computer Vision. 2003. 40. Krizhevsky A., Sutskever I., Hinton G.E. ImageNet classification with deep convolutional neural networks // Advances in Neural Information Processing Systems. 2012. 41. Simonyan K., Zisserman A. Very deep convolutional networks for large-scale image recognition // 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. 2015. 42. Viola P., Jones M. Robust Real-time Object Detection // International Journal of Computer Vision. 2001. 43. LeCun Y., and etc. Object recognition with gradient-based learning // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 1999. 44. Matalov D.P., Usilin S.A., Arlazarov V. V. Single-sample augmentation framework for training Viola-Jones classifiers. 2019. 45. Arlazarov V.V., Matalov D.P., Usilin S.A. Lokalizaciya obraza pechati na dokumente, udostoveryayushchem lichnost', metodom mashinnogo obucheniya // Trudy Instituta sistemnogo analiza Rossijskoj akademii nauk (ISA RAN). 2018. T. Specvypusk. S. 158–166. 46. Krizhevsky A. Learning Multiple Layers of Features from Tiny Images // … Sci. Dep. Univ. Toronto, Tech. …. 2009. 47. Zeiler M.D., Fergus R. Visualizing and understanding convolutional networks // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2014. 48. Ioffe S., Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift // 32nd International Conference on Machine Learning, ICML 2015. 2015. 49. Szegedy C., and etc. Inception-v4, inception-ResNet and the impact of residual connections on learning // 31st AAAI Conference on Artificial Intelligence, AAAI 2017. 2017. 50. Szegedy C., and etc. Going deeper with convolutions // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2015. 51. Szegedy C., and etc. Rethinking the Inception Architecture for Computer Vision // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2016. 52. He K., and etc. Deep residual learning for image recognition // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2016. 53. Redmon J., and etc. You only look once: Unified, realtime object detection // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2016. 54. Redmon J., Farhadi A. YOLO v.3 // Tech Rep. 2018. 55. Sheshkus A., and etc. HoughNet: neural network architecture for vanishing points detection // arXiv Prepr. arXiv1909.03812. 2019. 56. Limonova E., Ilin D., Nikolaev D. Improving neural network performance on SIMD architectures // Eighth International Conference on Machine Vision (ICMV 2015). 2015. T. 9875. S. 98750L. 57. Limonova E., Sheshkus A., Nikolaev D. Computational optimization of convolutional neural networks using separated filters architecture // Int. J. Appl. Eng. Res. 2016. T. 11, № 11. S. 7491–7494. 58. Limonova E.E., and etc. Optimizaciya bystrodejstviya pervyh sloev glubokih svertochnyh nejronnyh setej // Vestnik Rossijskogo fonda fundamental'nyh issledovanij. Rossijskij fond fundamental'nyh issledovanij, 2016. № 4. S. 84–96. 59. Jaderberg M., Vedaldi A., Zisserman A. Speeding up convolutional neural networks with low rank expansions // BMVC 2014 - Proceedings of the British Machine Vision Conference 2014. 2014. 60. Denton E., and etc. Exploiting linear structure within convolutional networks for efficient evaluation // Advances in Neural Information Processing Systems. 2014. 61. Sironi A., and etc. Learning separable filters // IEEE Trans. Pattern Anal. Mach. Intell. 2015. 62. Jin J., Dundar A., Culurciello E. Flattened convolutional neural networks for feedforward acceleration // 3rd International Conference on Learning Representations, ICLR 2015 - Workshop Track Proceedings. 2015. 63. Figurnov M., and etc. PerforatedCNNs: Acceleration through elimination of redundant convolutions // Advances in Neural Information Processing Systems. 2016. 64. Kang H.P., Lee C.R. Improving performance of convolutional neural networks by separable filters on GPU // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2015. 65. Zhang C., Prasanna V. Frequency domain acceleration of convolutional neural networks on CPU-FPGA shared memory system // FPGA 2017 - Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 2017. 66. Park J., Sung W. FPGA based implementation of deep neural networks using on-chip memory only // ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. 2016. 67. Zhang C., and etc. Optimizing FPGA-based accelerator design for deep convolutional neural networks // FPGA 2015 - 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 2015. 68. Woźniak M., Graña M., Corchado E. A survey of multiple classifier systems as hybrid systems // Inf. Fusion. 2014. 69. Ko A.H.R., Sabourin R., Britto, A.S. From dynamic classifier selection to dynamic ensemble selection // Pattern Recognit. 2008. 70. Elmasry M.I. VLSI artificial neural networks engineering. Springer Science & Business Media, 2012. 71. Misra J., Saha I. Artificial neural networks in hardware: A survey of two decades of progress // Neurocomputing. 2010. 72. Adhikari S.P., and etc. A circuit-based learning architecture for multilayer neural networks with memristor bridge synapses // IEEE Trans. Circuits Syst. I Regul. Pap. 2015. 73. Arce F., and etc. Differential evolution training algorithm for dendrite morphological neural networks // Appl. Soft Comput. J. 2018. 74. Antelis J.M., and etc. Dendrite morphological neural networks for motor task recognition from electroencephalographic signals // Biomed. Signal Process. Control. 2018. 75. Mondal R., Santra S., Chanda B. Dense morphological network: an universal function approximator // arXiv Prepr. arXiv1901.00109. 2019. 76. Limonova E., and etc. Bipolar Morphological Neural Networks: Convolution Without Multiplication // arXiv Prepr. arXiv1911.01971. 2019.
|