DATA PROCESSING AND ANALYSIS
INTELLIGENCE SYSTEMS AND TECHNOLOGIES
O. A. Padas, I. A. Kunina Detection of Tears on Document Page Using Analysis of Infrared Image
MATHEMATICAL MODELING
SOFTWARE ENGINEERING
O. A. Padas, I. A. Kunina Detection of Tears on Document Page Using Analysis of Infrared Image
Abstract. 

This paper examines the problem of detecting tears on a protected document page. We present an approach based on analyzing the document image in the infrared range. It is assumed that in this case it is possible to separate the damage from the protective elements applied by IR-transparent inks. So the problem of tears detection might be reduced to a search for thin lines of a certain length adjacent to the border of the document page. Thus, we developed a tear search algorithm based on the search for "ridge" type lines followed by checking whether the line satisfies the specified properties. We created and published a VIUR dataset with Russian banknotes in order to test the algorithm. The recall of the proposed algorithm is 0.87, the precision is 0.94.

Keywords: 

document image analysis, tears, infrared range, ridges.

DOI 10.14357/20718632240206 

EDN UVEKWC

PP. 65-73.
 
References

1. Awal, A. M., Ghanmi, N., Sicre, R., Furon, T.. Complex document classification and localization application on identity document images. 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), 2017; 1: 426-431.
2. Attivissimo, F., Giaquinto, N., Scarpetta, M., & Spadavecchia, M. An automatic reader of identity documents. IEEE International Conference on Systems, Man and Cybernetics (SMC). 2019; p. 3525-3530.
3. Arlazarov, V. L., Arlazarov, V. V., Bulatov, K. B., Chernov, T. S., Nikolaev, D. P., Polevoy, D. V., ... , Usilin, S. A.. Mobile ID Document Recognition–Coarse-to-Fine Approach. Pattern Recognition and Image Analysis. 2022; 32(1): 89-108.
4. Chernyshova, Y. S., Aliev, M. A., Gushchanskaia, E. S., Sheshkus, A. V. Optical font recognition in smartphonecaptured images and its applicability for ID forgery detection. Eleventh International Conference on Machine Vision (ICMV 2018). 2018; 11041: 402-409.
5. Kada, O., Kurtz, C., van Kieu, C., Vincent, N.. Hologram Detection for Identity Document Authentication. International Conference on Pattern Recognition and Artificial Intelligence. Cham: Springer International Publishing. 2022; p. 346-357.
6. Koliaskina, L. I., Emelianova, E. V., Tropin, D. V., Popov, V. V., Bulatov, K. B., Nikolaev, D. P., Arlazarov, V. V. MIDV-Holo: A Dataset for ID Document Hologram Detection in a Video Stream. International Conference on Document Analysis and Recognition. Cham: Springer Nature Switzerland. 2023; 486-503.
7. Polevoy D. V., Panfilova E. I., Nikolaev D. P.. White balance correction for detection of holograms in color images of black and white photographs. ITiVS. 2021; 3: 82-95. doi: 10.14357/20718632210308.
8. Valov M. A., Matalov D. P., Usilin S. A.. The use of centrally symmetric Haar features for stamp localization on the passport of a citizen of the Russian Federation. Trudy ISA RAN (Proceedings of ISA RAS). 2023; 73(3): 31-3. doi: 10.14357/20790279230304. (In Russ)
9. Schityvatel' Dokumentov PS4-02 PSHNK.468469.009. Available from: http://expertprospb.
ru/2019/05/31/schityvatel-dokumentov-ps4-02-
pshnk-468469-009/ [Accessed 13 October 2023]. (In Russ)
10. Passport Scanner With RFID OCR4000. Available from:
http://www.tenkoto.com/en/Products/pos/2019/0827/Read
er/Passport.html [Accessed 13 October 2023].
11. Kunina, I. A., Aliev, M. A., Arlazarov, N. V., & Polevoy, D. V.. A method of fluorescent fibers detection on identity documents under ultraviolet light. Twelfth International Conference on Machine Vision (ICMV 2019). 2020; 11433:89-96.
12. Kaur, A., Raj, A., Jayanthi, N., Indu, S.. Inpainting of irregular holes in a manuscript using unet and partial convolution. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). 2020; p 778-784.
13. Hedjam, R., Cheriet, M.. Historical document image restoration using multispectral imaging system. Pattern Recognition. 2013; 46(8): 2297-2312.
14. de Sá Soares, A., das Neves Junior, R. B., Bezerra, B. L. D.. BID Dataset: a challenge dataset for document processing tasks. Anais Estendidos do XXXIII Conference on Graphics, Patterns and Images. SBC, 2020; p. 143-146.
15. Bulatovich, B. K., Vladimirovna, E. E., Vyacheslavovich, T. D., Sergeevna, S. N., Sergeevna, C. Y., Zuheng, M., ..., Muzzamil, L. M. MIDV-2020: a comprehensive benchmark dataset for identity document analysis. Computer Optics. 2022; 46(2): 252-270.
16. Polevoy D. V., Sigareva I. V., Ershova D. M., Arlazarov V. V., Nikolaev D. P., Zuheng M., Muhammad M. L., Burie J.. Document Liveness Challenge dataset (DLC- 2021). Journal of Imaging. 2022; 8(7). 181. doi: 10.3390/jimaging8070181.
17. Tropin D. V., Shemyakina Y. A., Konovalenko I. A., Faradjev I. A.. Localization of planar objects on the images with complex structure of projective distortion. Informatsionnye protsessy. 2019; 19(2): 208-229. (In Russ)
18. Skaner Dokumentov SD-03 PSHNK.468469.016. Available
from: http://expertprospb.ru/2021/09/07/skanerdokumentov-
sd-03-pshnk-468469-016/. [Accessed: 13 October 2023]. (In Russ)
 

2024 / 03
2024 / 02
2024 / 01
2023 / 04

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".