DATA PROCESSING AND ANALYSIS
INTELLIGENCE SYSTEMS AND TECHNOLOGIES
MATHEMATICAL MODELING
Y. S. Popkov, Y. M. Polyschuk Assimptotic Numerical Method for Multidimensional Integrals of Forecasting of Thermokarst Lakes
SOFTWARE ENGINEERING
Y. S. Popkov, Y. M. Polyschuk Assimptotic Numerical Method for Multidimensional Integrals of Forecasting of Thermokarst Lakes
Abstract. 

We develop an analytical method for the approximate calculation of multidimensional integrals, focused on solving balance equations in Randomized Machine Learning procedures. The latter are used to forecast the evolution of thermokarst lakes’ area. The method is based on the series expansion of an analytical function - the exponential - and the transformation of multidimensional integrals into the product of simple one-dimensional integrals on interval sets.

Keywords: 

thermokarst lakes; Taylor series; randomized machine learning; Lagrange method; balance equations.

DOI 10.14357/20718632240208 

EDN WWJQDJ

PP. 86-91.
 
References

1. Zuidhoff F.S., Kolstrup E. Changes in palsa distribution in relation to climate change in Laivadalen, Northern Sweden, espesially 1960-1997. Permafrost and Periglacial Processes, 2000, v.11, pp. 55-69.
2. Kirpotin S., Polishchuk Y., Bruksina N. Abrupt changes of thermokarst lakes in Western Siberia: impacts of climatic warming on permafrost melting. International Journal of Environmental Studies. 2009, v. 66, No.4, pp.423-431.
3. Karlson J.M., Lyon S.W., Destouni G. Temporal behavior of lake size-distribution in a thawing permafrost landscape in Northwestern Siberia. Remote sensing, 2014, No. 6, pp. 621-636.
4. Bryksina N.A., Polishchuk Yu.M. Analysis of changes in the number of thermokarst lakes in permafrost of Western Siberia on the basis of satellite images. Cryosphere of Earth, 2015, v. 19, No.2, pp. 114-120.
5. Popkov Y.S., Popkov A.Y., Dubnov Y.A. Entropy randomization in Machine Learning. CRC Press, 2023
6. Dubnov Y.A., Popkov A.Y., Polishcuk V.Y., Sokol E.S., Melnikov A.V., Y.M.Polishcuk Y.M., Popkov Y.S. Randomized Mashine Learning Algoritms to Forecast the Evolution of Thermokarst Lakes Area in Permafrost Zones. Automation and Remote Control, 2023, v.84, No.1, p. 56-70.
7. Darkhovsky B.S., Popkov A.Y., Popkov Y.S. Method of Batch Monte Carlo Iterations for Solving of Global Optimization Problems // Informacionnie Technologii i Vichislitelnie Sistemy, 2014, No.3. pp. 39-52.
 
2024 / 03
2024 / 02
2024 / 01
2023 / 04

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".